Precalculus

2-06 Zeros of Polynomial Functions

Fundamental Theorem of Algebra

If $f(x)$ is polynomial of degree n, then there is at least 1 zero

- There are exactly n zeros
- There are n linear factors (Linear Factorization Theorem)

Find all zeros of $f(x)=x^{4}-16$

Find all the zeros of $f(x)=2 x^{4}-9 x^{3}-18 x^{2}+71 x-30$

Descartes's Rule of Signs

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial with real coefficients and $a_{0} \neq 0$
The number of \qquad real zeros is equal to the number of variations in sign of \qquad or less by even integer The number of real zeros is equal to the number of variations in sign of \qquad or less by even integer
Describe the possible real zeros of $f(x)=-2 x^{3}+5 x^{2}-x+8$

Complex Conjugate Theorem

If a complex number $a+b i$ is a zero, then \qquad is also a zero.

Find a polynomial with real coefficients with zeros $\frac{2}{3},-1,3+\sqrt{2} i$

