Precalculus

2-06 Zeros of Polynomial Functions

Fundamental Theorem of Algebra

If *f*(*x*) is polynomial of degree *n*, then there is at least 1 zero

- There are exactly *n* zeros
- There are *n* linear factors (Linear Factorization Theorem)

Find all zeros of $f(x) = x^4 - 16$

Find all the zeros of $f(x) = 2x^4 - 9x^3 - 18x^2 + 71x - 30$

Precalculus 2-06		Name:
Descartes's Rule of Sign	ns	
Let $f(x) = a_n x^n + a_{n-1} x^n$	$x^{n-1} + \dots + a_2 x^2 + a_1 x + a_2$ be a polynomial with real coefficients an	nd $a_0 \neq 0$
The number of	real zeros is equal to the number of variations in sign of	or less by even integer
The number of	real zeros is equal to the number of variations in sign of	or less by even integer
Describe the possible real	zeros of $f(x) = -2x^3 + 5x^2 - x + 8$	
F F		
Complex Conjugate The	eorem	
If a complex number a	+ <i>bi</i> is a zero, then is also a zero.	
Find a nolynomial with real coefficients with zeros $\frac{2}{3} = -1, 3 \pm \sqrt{2}i$		